skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Horvath, Steve"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The naked mole-rat (NMR) is an exceptionally long-lived rodent that shows no increase of mortality with age, defining it as a demographically non-aging mammal. Here, we perform bisulfite sequencing of the blood of > 100 NMRs, assessing > 3 million common CpG sites. Unsupervised clustering based on sites whose methylation correlates with age reveals an age-related methylome remodeling, and we also observe a methylome information loss, suggesting that NMRs age. We develop an epigenetic aging clock that accurately predicts the NMR age. We show that these animals age much slower than mice and much faster than humans, consistent with their known maximum lifespans. Interestingly, patterns of age-related changes of clock sites in Tert and Prpf19 differ between NMRs and mice, but there are also sites conserved between the two species. Together, the data indicate that NMRs, like other mammals, epigenetically age even in the absence of demographic aging of this species. 
    more » « less
  2. Abstract DNA methylation-based biomarkers of aging have been developed for humans and many other mammals and could be used to assess how stress factors impact aging. Deer mice (Peromyscus) are long-living rodents that have emerged as an informative model to study aging, adaptation to extreme environments, and monogamous behavior. In the present study, we have undertaken an exhaustive, genome-wide analysis of DNA methylation inPeromyscus, spanning different species, stocks, sexes, tissues, and age cohorts. We describe DNA methylation-based estimators of age for different species of deer mice based on novel DNA methylation data generated on highly conserved mammalian CpGs measured with a custom array. The multi-tissue epigenetic clock for deer mice was trained on 3 tissues (tail, liver, and brain). Two human-Peromyscusclocks accurately measure age and relative age, respectively. We present CpGs and enriched pathways that relate to different conditions such as chronological age, high altitude, and monogamous behavior. Overall, this study provides a first step towards studying the epigenetic correlates of monogamous behavior and adaptation to high altitude inPeromyscus. The human-Peromyscusepigenetic clocks are expected to provide a significant boost to the attractiveness ofPeromyscusas a biological model. 
    more » « less
  3. Using DNA methylation profiles (n= 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels inHOXLsubclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors. The methylation state of some modules responds to perturbations such as caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the biological characteristics and traits of different mammalian species. 
    more » « less